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Abstract
In this paper we re-obtain the retarded as well as the non-retarded force between
an electrically polarizable atom and a magnetically polarizable one in a very
simple and suggestive way. Using a perturbative approach, we show that
while the retarded force between these two atoms is proportional to 1/r8, the
non-retarded force is proportional to 1/r5, in agreement with Feinberg and
Sucher’s result (Feinberg G and Sucher J 1970 Phys. Rev. A 2 2395). This
rather surprising result should be contrasted with the 1/r7 behaviour of the
London–van der Waals force between two electrically polarizable atoms. Our
approach permits us to give a physical interpretation for such a result.

PACS numbers: 12.20.−m, 32.10.Dk

Non-retarded dispersive forces between two electrically polarizable atoms were calculated in
detail for the first time by London [2] who applied fourth-order perturbation theory in ordinary
quantum mechanics and showed that this force is proportional to 1/r7, where r is the distance
between the two atoms. However, when r is large compared with the transition wavelengths
involved, retardation effects in the propagation of the electromagnetic interaction must be
taken into account. Casimir and Polder [3] investigated the influence of retardation in the
London–van der Waals forces making use of perturbative QED. They were motivated by a
conjecture made by Verwey and Overbeek [4] who suggested that the interatomic force should
fall faster than 1/r7 at large distances, otherwise experimental data for some colloidal systems
and the theoretical predictions would not agree. Casimir and Polder found that the retarded
force between two atoms is proportional to 1/r8. This kind of change also occurs when we
deal with the force between an electrically polarizable atom and a perfectly conducting wall.
While the non-retarded force, which is valid for short distances from the wall, is proportional
to 1/r4 (basically the force between the induced atomic dipole and its image), the retarded

1 Present address: Institut d’Estudis Espacials de Catalunya (IEEC/CSIC), Edifici Nexus 201, Gran Capitá 2-4,
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force is proportional to 1/r5 [3, 5]. Thus, retardation effects seem to change the exponent in
the power law of the force only by one unit.

In this paper, we will investigate the non-retarded force between two non-similar atoms:
an electrically polarizable atom and a magnetically polarizable one. As far as the authors
know, this problem was discussed only by Feinberg and Sucher [1] three decades ago, who
obtained a quite unexpected result, namely: while the retarded potential between the two atoms
is proportional to 1/r7, the non-retarded potential is proportional to 1/r4. This situation must
be contrasted with the 1/r6 power law for the non-retarded potential between two electrically
polarizable atoms. In [1] the authors develop a quite general theory of the van der Waals
interaction, which has the advantage of being a model-independent approach. Basically, they
show that the van der Waals interaction can be expressed in terms of measurable quantities
which are related to the interactions of the individual systems with real photons. More
specifically, since the van der Waals interaction can be viewed as arising from the exchange of
two virtual photons between the two atoms, they show that this interaction can be computed in
terms of the amplitude for the emission or absorption of two real photons by each atom. Here,
we employ a completely different and much simpler approach to obtain the non-retarded force
mentioned above which allows us to give a physical interpretation for such a result.

The retarded interaction energy U(r) between two atoms endowed with both electric
and magnetic polarizations was discussed in detail by Feinberg and Sucher [6], and also by
Boyer [7]. The result can be cast into the form [6, 7]:

U(r) = [−23 (α1α2 + β1β2) + 7 (α1β2 + α2β1)]
h̄c

4πr7
(1)

where αi and βi (i = 1, 2) are, respectively, the (static) electric polarizability and the (static)
magnetic polarizability of the ith atom. If in equation (1) we set β1 = β2 = 0, we recover
Casimir and Polder’s result [3].

In order to compute the non-retarded van der Waals interaction potential for the case
at hand we shall use a perturbative approach totally analogous to that found in Milonni’s
book [5]. However, before applying it to our problem, some comments are in order: in this
approach the change in the energy of a polarizable atom due to a dynamical field has the same
form as if the field were a static one, except for the fact that the atomic polarizability is now a
function of the frequency of each Fourier mode of the dynamical field. This can be justified
because the van der Waals interaction is a low-frequency phenomenon. For the case where the
distance between the atoms is much greater than the transition wavelengths (retarded case), the
dominant contribution comes from the static polarizabilities, so that dispersion is irrelevant
and we have a very low frequency phenomenon. On the other hand, for the non-retarded
case, where the distance between the atoms is much smaller than the transition wavelengths
(but greater than a few atomic diameters to avoid electronic wavefunction overlapping), we
cannot neglect dispersion, but even for this case, the dominant contributions come from low
frequencies so that this formalism can still be applied.

Consider then two atoms, A and B, and assume that atom A is electrically polarizable,
while atom B is magnetically polarizable. In obvious notation, the change in the energy level
of atom A is given by [5]

〈0|Ŵ |0〉 = −1

2

∑
σ

αA(ωσ )〈0|E2
σ (xA, t)|0〉. (2)

In the last equation σ = (k, λ) characterizes the electromagnetic field mode (wave vector
and polarization state, respectively) and αA(ωσ ) is the electric polarizability of atom A at
frequency ωσ . The point is that such (perturbative) effective quadratic interactions are known
to be appropriate for off-shell (non-resonant) processes relevant to energy shifts [8]. It is now
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convenient to express each mode of the total electromagnetic field operator at the position of
atom A as the sum of two contributions:

Eσ (xA, t) = E0σ (xA, t) + EBσ (xA, t) (3)

where the first term on the r.h.s. of equation (3) stands for the unconstrained vacuum field
contribution and the second term represents the contribution due to the presence of atom
B. Since we are interested in the interaction potential between the two atoms, we insert
equation (3) into equation (2) and retain only the crossed terms. The dispersive van der Waals
interaction potential is then identified as

U(r) := −1

2

∑
σ

αA(ωσ )〈0|E(+)
0σ (xA, t) · EBσ (xA, t) + EBσ (xA, t) · E(−)

0σ (xA, t)|0〉 (4)

where we have decomposed the vacuum field into positive and negative frequencies with

E(±)
0σ (x, t) = ±i

(
2πh̄ωσ
V

)1/2

a(∓)σ exp(∓iωσ t) exp(±ik · x)ε̂σ (5)

where a(−)σ and a(+)σ (0) are respectively the usual annihilation and creation operators of a
photon with momentum k and polarization λ; ε̂σ is the polarization vector. In order to obtain
an approximate expression for the field operator EBσ (xA, t) we first recall that the classical
electric field at xA generated by an oscillating magnetic dipole m located at xB is given
by [9]

E(xA, t) = −
{

ṁ(t − r/c)

cr2
+

m̈(t − r/c)

c2r

}
× r̂ (6)

where r = |r| := |xA−xB |. Note that the electric field of an oscillating magnetic dipole does
not contain the static term, i.e. there is no term proportional to 1/r3 in equation (6). Observe
also that the equations for the electromagnetic field operators in the Heisenberg picture are
formally identical to their classical counterparts. Hence, we can obtain a good approximation
for the operator field EB,σ (xA, t) if we think of m in equation (6) as the magnetic dipole of
atom B induced by the vacuum magnetic field, i.e. if we write

m(t) =
∑
σ

βB(ωσ )
[
B(+)

0σ (xB, t) + B(−)
0σ (xB, t)

]
(7)

where βB(ωσ ) is the magnetic polarizability of the atom B at frequency ωσ . Since atom
A is only electrically polarizable and atom B is only magnetically polarizable, we shall
suppress from now on the subscripts A and B from α and β, respectively. The analogues of
equation (5) for the vacuum magnetic field operators are given by

B(±)
0σ (x, t) = ±i

(
2πh̄ωσ
V

)1/2

a(∓)σ exp(∓iωσ t) exp(±ik · r)(k̂ × ε̂σ ). (8)

Inserting equations (8) into (7) and the result into equation ( 6) we get the electric field operator
EBσ (xA, t). Substituting this expression into equation (4) we obtain the following expression
for U(r):

U(r) = 2πh̄

V
Re

[∑
σ

k3α(ωσ )β(ωσ ) exp(−ikr) exp[ik · (xA − xB)]

×
(

i

(kr)2
− 1

kr

)
(êσ · (k̂ × êσ )× r̂)

]
. (9)
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Passing to the continuum, i.e. using

∑
kλ

→ V

(2π)3

2∑
λ=1

∫ ∞

0
dk k2

∮
d�k

and computing the angular integral we obtain

U(r) = h̄

πc6

∫ ∞

0
dωω6α(ω)β(ω)G

(ωr
c

)
(10)

where we have defined

G(x) := − sin(2x)

x4
+ 2

cos(2x)

x3
+

sin(2x)

x2
. (11)

The last two equations give the general expression for the interaction potential between an
electrically polarizable atom and a magnetically polarizable one. However, it is convenient to
analyse the retarded and the non-retarded limits separately. For large distances compared with
the atomic transition wavelengths (r � c/ωmn), as in the case of two electrically polarizable
atoms [5], the vacuum field modes with large wavelengths give the dominant contribution and
hence, as a first approximation, we may replace the polarizabilities α(ω) and β(ω) by their
static values. Consequently, the retarded interaction potential between these atoms is given by

UR(r) = h̄cα(0)β(0)

πr7

∫ ∞

0
dx x6G(x). (12)

Observe that the 1/r7 behaviour of the retarded interaction energy can already be seen from the
last equation, since the remaining integral gives only an extra numerical factor. Substituting
equation (11) into equation (12) and evaluating the needed integrals, we obtain

UR(r) = 7h̄cα(0)β(0)

4πr7
(13)

which agrees with equation (1) if in this equation we set α2 = β1 = 0. Therefore, the force in
the retarded case behaves like 1/r8, in perfect analogy with the Casimir and Polder result for
two electrically polarizable atoms.

For short distances (r  c/ωmn), a situation where the retardation effects can be neglected,
one would naively expect that UNR(r) ∝ 1/r6 (and hence FNR ∝ 1/r7), but as we will show,
this is not so. In this limit, the dominant contribution to the integral in equation (10) comes
from the first term of the rhs of equation (11), so that

UNR(r) = h̄

πc6

∫ ∞

0
dωω6α(ω)β(ω)

{
− sin (2ωr/c)

(ωr/c)4

}
. (14)

In order to evaluate this integral,we need the expressions forα(ω) andβ(ω). From perturbative
quantum mechanics, it can be shown that the atomic (electric) polarizability of an atom at
level n is given by [10]

αn(ω) = 2

3h̄

∑
m

ωmn|dmn|2
ω2
mn − ω2

(15)

where dmn is the transition dipole moment of atom A and ωmn its transition frequencies.
An analogous expression also holds for β(ω), if we replace dmn by µmn and ωmn by ω′

mn in
equation (15), µmn being the transition dipole moment of atom B and ω′

mn its transition
frequencies. Some comments are in order here: we are not considering diamagnetic interaction
between the atoms, since the dispersion relation would be different from the one we are
assuming for β; moreover, in equation (15) we have neglected the linewidths, but they do exist
so that for ω equal to the resonance frequencies (ω = ωmn) the real part of αn(ω) vanishes
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(the same remarks hold for βn(ω)), and the integral in equation (14) is indeed well behaved.
With this in mind, we can write

U(r) ≈ − h̄

πc2r4
Im

∫ ∞

0
dωω2α(ω)β(ω) exp(i2ωr/c)

= − h̄

πc2r4
Im

∫ ∞

0
i dσ (iσ)2α(iσ)β(iσ) exp(−2ωr/c)

= h̄

πc2r4

(
2

3h̄

)2∑
m,p

ωmnωpn|dmn|2|µpn|2
∫ ∞

0

σ 2e(−2σr/c)(
σ 2 + ω2

mn

) (
σ 2 + ω′2

pn

) dσ (16)

where we used the Cauchy residue theorem and also equation (15) as well as the analogous
equation for βn(ω). Since we are investigating the short distance behaviour of U(r), it is
legitimate to make the approximation exp(−2ωr/c) ≈ 1 in the previous integral (though σ
is integrated from 0 to ∞, the integrand vanishes for large values of σ due to the powers of
σ present in the denominator). Moreover, assuming for simplicity that there is a dominant
transition in each atom, the above equation takes the form

V (r) = h̄

πc2

(
2

3h̄

)2 |d|2 |µ|2
r4

∫ ∞

0

σ 2 dσ(
σ 2 + ω2

0

) (
σ 2 + ω′2

0

)
= h̄

2c2r4

ω2
0ω

′2
0 αβ

(ω0 + ω′
0)

where ω0 and ω′
0 are respectively the dominant transition frequencies of the electrically

polarizable atom and the magnetically polarizable one and with α := ω−1
0 (2/3h̄)|d|2 and

β := ω′−1
0 (2/3h̄)|µ|2 being the (static) electric and the magnetic atomic polarizabilities. This

result shows that when we go from the retarded to the non-retarded regime there is a striking
change from r−7 to r−4 in the dispersive interaction potential, in agreement with Feinberg
and Sucher’s result [1]. It is worth mentioning that, if we are concerned only with this
1/r4 behaviour, a semiclassical calculation based on the fluctuating dipole model can also
provide this result [11] (applications of the fluctuating dipole model to the usual case can be
found in [5, 12]). This result is to be compared with the case where the two atoms are only
electrically polarizable, in which the change is from r−7 to r−6 in the potential. The reason
for such a change can be traced back to the absence of the static term in the expression for the
electric field operator created by a magnetic dipole induced by the electromagnetic vacuum
field fluctuations. Had we started by computing the change in the energy level of atom B,
we would have obtained the same result and the reason is analogous: there is no static term
in the expression for the magnetic field operator created by an electric dipole induced by the
electromagnetic vacuum field fluctuations as well.

It is also the present authors’ opinion that such a change in the power law of
interaction (three powers of r) deserves an experimental investigation. Recall that Tabor and
Winterton [13] were able to observe experimentally the change in the power law for the
usual case, where only electric polarizabilities were involved ( just one power of r), but no
experimentalist has addressed his attention to the unusual case treated here. A possible system
where our result could be checked is the hydrogen–heliumsystem in very low energy scattering
processes with both atoms in their ground states (recall that modern techniques to manipulate
cold atoms are now available). The reason for that is the following: while for the helium atom
the electric polarizability is much more relevant than the magnetic polarizability, the opposite
happens for the hydrogen atom, i.e. the magnetic polarizability is much more relevant than the
electric polarizability, since its ground state corresponds to a hyperfine singlet. Of course, the
experiment we are suggesting is completely different from Tabor and Winterton’s experiment,
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since the latter involved static measures and ours involves scattering cross sections (different
power laws yield different scattering cross sections). However, it is quite probable that the
change from the 1/r7 to the 1/r4 behaviour in the power law of the interaction will not be so
abrupt as in the usual case (the distance range checked by Tabor and Winterton was from 50
Å to 300 Å, and that was enough for them to observe the change from the non-retarded to the
retarded regimes). The result obtained here may also be of some relevance in the analysis of
the force between two macroscopic bodies.
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